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A SELFSIMILAR PROBLEM ON THE ACTION OF A SUDDiN LOAD ON 
THE BOUNDARY OF AN ELASTIC HALF-SPACE 

A.G. KULIKOVSKII and E.I. SVESBNIKOVA 

The solution of the non-linear problem of the action of a constant stress 
suddenly applied to the plane boundary of an elastic half-space that has 
homogeneous prestrain is investigated, The problem is selfsimilar, and 
its solution is constructed from shock and selfsimilar simple waves 
investigated earlier /l-5/. The problem under consideration is the 
necessary element that should be contained in solutions of different non- 
stationary problems, for instance, in the problem of the decay of an 
arbitrary initial discontinuity. Moreover, the selfsimilar solution 
constructed below represents the asymptotic form long times of the 
corresponding non-selfsimilar problems when the stress on the half-space 
boundary varies from some values to others according to an arbitrary law 
over a limited time. 

1. Formulation of the problem. A homogeneous isotropic non-linearly elastic 
medium is given by its internal energy u (E,~.S) in the form /l-5/ 

0 = pOC = '.'&I,? - PI? - pIlIz 2 yl, - 6113 - E_Iz2 - (1.1) 
pOrO (S - S,) A const 

I, = F,i. I? = F,j',j. I, E,jEj,.F 1 

1 Lwi 6UI oLct au., 
p;,=-i_ oi-7-oE.r _ 

t .., *! -2 -2 1 

Here S is the entropy, cij are the components of Green's strain tensor, ixi is the 
displacement vector, p0 is the density in the unstressed state, and E, are the Lagrange 
coordinates that are rectangular Cartesian coordinates in the unstressed state. 

The medium that possesses a small homogeneous initial strain occupies the half-space 

El > 0. At the time t = 0 a stress that alters the state of strain on the boundary is applied 
to the boundary ES = 0 and later remains constant. The problem is selfsimilar, and the 
solution depends on E3. 1. A perturbation from the boundary in the domain Es>0 propagates 
in the form of plane strain waves in which only the following components of the displacement 
gradient vary: au:,!ai;3 = u, au.,/a:3 = L', a~,laE~ = u-'. We designate by L;, V,u*‘, respectively, the 

initial magnitudes of these strain components, and we denote those values which they acquire 
on the boundary subjected to the action of the suddenly applied stress by u*, v*, w,, 
respectively. 

In addition to the above, the medium also possesses other strain components that do not 
vary in this problem and play the part of parameters. These components are en and eZ1. The 
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quantity er2 can be considered to be zero if the directions of the axes g, and & are 
selected appropriately. 

We will assume the initial and boundary strains to be small, of the same order of 

smallness, which we will agree to denote by E. The expansion (1.1) of the function Q, in 
the small strains of --e yields a representation of the potential for an arbitrary isotropic 
elastic medium with accuracy to tY /l-3/. 

One quasilongitudinal and two quasitransverse simple or shock waves can propagate in the 
direction of the positive part of the EJ axis. They will also be used to construct the 
solution. 

2. Utilization of quasilonSitudina1 waves in the solution. The velocities 
of the quasilongitudinal waves, both the simple and the shock, exceed the velocities of any 

quasitransverse waves by the finite quantity h+P. The component u' undergoes the main 
change in these waves. The change in u and c‘ is small, of the second order in E or evenless. 

Therefore, the state of strain behind the quasilongitudinal waves is determined by the 
components El19 %?. u'*, u + 0 (EZ), 1' + 0 (e'). We take it as the new initial state over which 

the quasitransverse waves propagate , and for simplicity we denote the initial shear strains 
therein by U, V, as before. Now, the prcblem can be solved for some quasitransverse waves. 
The change that they introduce into the component u' will be of the second order of smallness 
in E. If this correction must be taken into account, the solution of the problem can be 
continued by successive approximations. 

3. Solution with quasitransverse waves. The component L(' can be eliminated 

frominvestigations/l, 3/ (expressed in terms of u and 14 in quasitransverse waves. Further 
construction of the solution can be carried out in the uv plane where the point V, Vportraying 
the initial state, and the point u+. I*., (the final state) must be connected continuously by 
using the integral curves of the quasitransverse simple waves /2/ and the evolutionary sections 
of the shock adiabat /3/. It is here necessary to conserve the sequence of the wavesuccession 
as a function of the velocity. 

The integral curves of simple waves are described by the differential equations 

G = (2~ - s.2y) (cl? - E,~),x 
x = tl - (p - p - a:*\')" (i. 7_ p) - 2E 

The form of these lines and the change in the characteristic velocities along them are 
investigated in /2/. Since simple waves have a tendency to breaking for certain directions 
_. 

of the change of parameters therein, the solution of the selfsimilar problem can then consist 
of just not-breaking simple and shock waves. 

Theshockadiabat of quasitransverse shock waves is given in the UL' plane by the equation 

(u* - V* - R?) (UC - 1-u) - 2G (U - C) (r - 1') = 0 (3.1) 

(here R? = G* - I'*). The shock adiabat and the segments extracted thereon that simultaneously 
satisfy the conditions of a non-decrease in entropy and evolutionarity /l, 3/ are shown in 
Fig.1 (the heavy continuous line for media with r.>O, and the heavy dashed line for media 
with x < 0). 

The initial point A (c', l*)can always be located in the first quadrant of the uv plane. 
An arbitrary finite (boundary) state u.+l'* can be portrayed by any point in this plane. 
Because of the anisotropy of the initial state of strain, quasitransverse waves, both simple 
and shock, are separated into fast waves, for whichthevelocity of the jump Ii‘ satisfies the 
conditions 

c*- < M. < c2*, cl+ < w 

and slow waves for which 

Here ci+ and ci- 
respectively. 

are the characteristic velocities behind and ahead of the discontinuity, 
In the case when the evolutionary segment of the shock adiabat adjoins the 

initial point A (u, V),we call the corresponding shocks waves of the first kind, and in the 
remaining cases waves of the second kind. 

We denote the slow and fast simple waves by R1 and R,, respectively, and the slow 

and fast shocks of the first kind by s,, s, and the slow and fastshocksof the second kind by 

S,' and S,*. 

When it helps the comprehension, 
velocity of the jump W in the uu plane. 

we shall indicate the initial and final point of the 
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The Jouguet /l, 3/ shocks for which the velocity of the wave W agrees with one of the 
characteristic velocities et*, i .e ., the equality signs are satisfied under evolutionarity 
conditions, are of special value when constructing the solution. The shock velocity is W = c~- 
at the points K, F, K’, F’,D in Fig.1, and at the other Jouguet points WL =CZ-. WE =cl+, W, = 
c,+, w, = c*+. If W= c+,then a simple wave of the same type can follow behind the Jouguet shock. 
If W = c-,then the Jouguet shock can follow directly behind a simple wave of the same type. 

The form of the shock adiabat as well as the number and location of the evolutionary 
segments thereon depend on the sign of the function D for K> 0 and of D, for x(0 /3/ 

Fig.1 

D (L’, V, G) 3 cp- - 

! 
Fig.2 

cl+ (E), D, (LJ, V, G) _= c,- - c,? (H). (3.3) 

The equations D = 0 and D, = 0 are shown by closed lines containing the origin and having 
the dimensions -l/s /3/ in the plane of the initial strains W. Within the appropriate 
curves D and D, are positive: outside they are negative. The shock adiabat is displayed in 
Fig.1 for the maximum number of evolutionarity sections, which corresponds to D (0 (for x> 0) 
and Dl>O (for x(O). When D = 0 the points K,E,F merge into one point E, when D, = 0, 
the points h",H, F’ merge into the point H. 

The construction of the solution in each such case should be examined separately. 

4. The case when x>O, G’R’<Cl. The initial point A lies in the first quadrant 
of the ~1; plane outside the curve D = 0. i.e., in the domain D (0. In this case, two fast 
shocks S, and S,* and one slow shock S, exist. Let R’ first be so much greater than G 
that the whole evolutionary section AJ of the shock adiabat also lies outside the curve D = (I. 
The solution is constructed separately in each of the domains 1-6. 1' - 6' displayed in Fig.2. 
We comment on the construction of these solutions. 

The evolutionary sections AF, EK. AJ of the shock adiabat of the initial point A are 
shown by heavy lines in Fig.2 (here and in subsequent figures). The non-evolutionary section 
of the same shock adiabat is portrayed by the fine line FPE. It is obviously possible to go 
from the point A of the slow shock S, to any point of the segment AF. In order to beincident 
in domain 1 above AF, it is first necessary to go along the segment of the integral curve AK, 

of the fast simple wave R2. A continuous selfsimilar solution exists here just up to the 
vertical axis. The sections of the simple wave integral curves used in Fig.2 and all subsequent 
figures are shown by dashes. From any point of the arc AK, we go to the domain 1' by the slow 

simple wave RI and to the domain 1 by the slow shock S,. The evolutionary sections of these 

waves S, terminate at points of the segment FF1 in the second quadrant. At these points 

iV = c*-. The point F, on t&e shock adiabat from the point K, has the coordinates u = 0, u= 

2G’R /4/. Thus, the solution has the form R,S, in the domain 1 (AFFIK,) and R2R, in domain 

1'. 
The fast shock S2 with ii., < c1 (A) leads to points of the segment AJ. The slow simple 

wave RI starting behind it goes to any point of the domain 2', and the solution in it has the 

form S,R,. 
A slow wave S, with velocity Vi',:< II',can go from any state on AJ after the first fast 
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wave S, having the velocity ]I',. The evolutionary segments of the slow waves S, go from 

the state AJ into the domain 2 and should terminate at point where Wr = ct- (since all the 

points AJ are in the domain DC 0 by our assumption). As shown in /5/, the adiabats of these 

slow waves certainly intersect the initial adiabat on the section FP, i.e., fill the whole 

domain 2. At the intersections tl; = UT1 , It is impossible to use segments of the adiabat 

S, behind the intersection with FP for the solution since there would be W;> WI and the 

second wave would overtake the first. Therefore, the sequence S2S1 yields a solution in domain 

2 (A PJ). The evolutionary part of the shock adiabat S,, constructed for the point J, is 

the lower boundary of this domain PJ, where the point P is the end of this evolutionary 
segment since 11, = 11,~ = cl- (J) there. For small Gj'R2 it lies between the points E and F 

/5/. 
To construct the solution in domains 3 - 3', the Jouguet shock &J is used at the point 

J. A fast simple wave can follow behind it. It is possible to go to the vertical axis along 
its integral curve JK?. Further construction of the solution is the same as for domains 

1 - 1'. The solution obtained has the following form: in domain 3 (JPF,K,) - S,JR?S, and in 
domain 3' - &R,R,. 

We use a fast shock of the second type S, * to transfer into the left half-plane of the 
uv plane. One such wave corresponds to a jump from the state A at the points of the segment 
KE of the initial adiabat, for it W,> c2 (A). A slow simple wave R, in the state of the 
domain 5' can go along each of the states obtained. The solution for any point of domain 5' 
has the form Sz* R,. The integral curve of the simple wave R, touching the shock adiabat 

at the point E (W,, =c,+)/3/ is the lower boundary of this domain. 
A slow shock S1 can go over each of the states of KE. The evolutionary sections of 

the slow wave shock adiabats intersect the initial shock adiabat in the section EF/S/ and 
therefore cover the whole domain 5. At the intersections W, = n’, = cg-. But cq- > c,(A). 

Consequently, the parts of these evolutionary segments of S, after the intersection with EF 

are unsuitable for the solution since we would haveW'?> ii., on them. Therefore, the solution in 

domain 5 consists of a sequence of two jumps S,*S,. 
The solution is constructed as follows for the domains 4 - 4'. A fast simple wave R2 

from the initial state A travels to any point of the arc AK,. Behind it travels a Jouguet 

shock of the second kind S,I;* with velocity Ii- = cz-. It is shown in /4/ that the closer 

the initial point is to the vertical axis, the closer is the point K to the vertical axis on 
its side. Consequently, by selecting the state on the arc clK‘,in an appropriate manner, a wave 
s * tK can arrive at any point of the arc KKi,. The slow simple wave R, travelling behind 

it completes the solution for the domain 4': R2SZh.*R,. If a slow shock travels behind .S?K*, 

then its evolutionary sections will go into domain 4. We have R'= c2- at the points IiKi,. 
The evolutionary sections of S, can be used for the solution only to states where 11‘, = Ii-, 

and since rvl = c2-, this is the point of the segment FFI, the boundary of domain 1. Thus the 

solution R,S,x *S, is found in the whole domain 4. 

The solution in the domain '6 (QPF21i,) S,JR2S2x*S, is similarly found, and in domain 6' 
also: S2~R2Sls*R,. 

The point Q through which the upper boundary of domain 6 passes is a Jouguet point of the 
shock adiabat constructed for the point J, and therefore, lies in the third quadrant of the 
UC’ plane. It is the state behind the fast S,r* wave travelling behind the other fast wave 

S IJ. Two fast waves can follow each other only at the identical velocity W, = iv,= c*(J). 

This combination of two waves can be considered as one composite jump since the states before 
the first and after the second wave satisfy the conservation laws with the same constants as 
for the first wave. Hence, the state behind the second wave (the point Q) also lies on the 
shock adiabat of the initial point A. The velocity W varies along this (initial) adiabat so 
that WP = U;, =CZ (J), whileitreaches a maximum at the point E. It is hence clear that the 

point Q always lies on the segment KE /5/. This results in the upper boundary of the domains 
6 and 6' passing within the domains 5 and 5'. The domains 5 and 6,5' and 6' have an 
intersection and the solution inthe shaded zone in Fig. 2 is not unique. The solution on the 
segment PF will be ambiguous as is seen from the construction of the solution in domains 2 
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and 5. 
As G/R=+ 0 the points P and F approach the origin, all the boundaries of the domains 

approach circles and rays, while the domain of ambiguity is converted into an angular Sector 
with vertex at the point 0. 

5. The case x>O, D<O. We will now enlarge G/R1 while conserving the requirement 
D (A)<0 SO that the initial point A remains outside the curve D = 0. From a certain time 
of the change in GIR’ a part of the evolutionary segment AJ on the initial shock adiabat 
falls inside the domain D >, 0. 

In conformity with (3.3), we should have W, = c,* = ci- at the end of the evolutionary 

Section for the shock adiabat of the slow wave travelling from the intersection of the initial 
Shock adiabat with the line D = 0. If w = wAJ, then the condition cl+ = cl- = cI (J) means 

that the points P and Q in Fig. 2 merge at the point of tangency E of the shock adiabats of 
the first and second waves. All the shock adiabats, starting at points of the segment A3 
intersect the initial shock adiabat at two points on different sides of the point E /5/. 
Consequently, only the point E where the Jouguet condition W .+E = WAJ = WJE = c, (E) is satisfied 

on both and they are also tangent to the integral curve R,, can be the point of tangency of 
these adiabats. Taking account of the monotonicity of the changes in Win the segment AJ, 
we hence conclude that the segment AJ intersects the curve D = 0 at just one point. The 
point J is therefore the first of the states of the segment AJ to fall into the domain D _>- 0. 

NOW, let the point J lie within D> 0. The intersection of the initial shock adiabat 
with the line D = 0 occurs at another point M, of the segment AJ (Fig.3). For a slow 

wave travelling from this point c:- = cl- = 1i V~.\f,< W*J and its shock adiabat is now tangent to 

the initial adiabat at the point E. But the evolutionary segments of the shock adiabats from 
the state .1J,J (within D > 0) are terminated by the points EE’ of the integral ‘curves R,. 

Therefore, the domain 2 with solution S,S, is bounded by the line AFEE’J. 

The solutions in all the domain5 1 - 6,l’ - 6’ are constructed exactly as in Sec.4 and 
have the same form as in the domains with the same numbers in Fig.2. The point E, isobtained 

as the end of the evolutionary section of the Shock adiabat S, travelling from the point df,. 

the points of intersection of the fast simple wave integral curve departing from the point J 
and the line D = 0. Unlike the preceding, two new domains 7 and 8 appear. The right 
boundaries EE, thereon can drop by using the shocks S, with velocities u'= c,-. Consequently, 

to the left of the line EE2 the solution can be continued along integral curves of simple waves 

H, which are tangent to the corresponding shock adiabats at the points EE2. The solution 

in domain 8 will be S&RI. and .S,JR*S,ER, in domain 7. 

6. The case x>O,D>O. The initial point A now lies in the domain D> 0. The 
whole section AJ of the shock adiabat and the segments MIA and JM, of the integral curves 

of the family R, that are its continuaticn is there (Fig.4) The arcs K,M, and K&J2 of the 

integral curves lie in the domain D .< 0. The points E, and E, are the ends of the evolutionary 

sections of slow waveS travelling from the boundary points IV, and .IJ,, respectively. The 

jump velocity is I~.=c,- at the psints E, ar.d E, and simple waves R, can follow directly 

behind such Jouguet shocks. Their integral curves are, respectively, the upper boundary of 
the domain 9 and the lower for domain 7. The solution in domain 9 has the form R&ER,. In 

the remaining domains the structure of the solution is the same as in Figs.1 and 2 in the 
domains with the same numbers. As the quantity R2’G diminishes further, the domains 4.4'. 6, 6' 
depart for infinity. In the limit when Rl<G and u*? - v_?e>G. the integral curves of the 
Simple waves and the part of the shock adiabats used in the Solution are ClOSS t0 lines 

parallel to the u and 1; axes. This solution was presented in /6/. 

7. The case X-CO. For media with x (0 the procedure for constructing the Solution 
is analogous to the preceding, except that in place of the function D (t’, V.R)the function 
D,(c’. V,R) plays the same part. Becuase large distinct shocks exist for x (0 (see tig.11, 

a larger number of domains with a different kind of structure of the solution is obtained 
when constructing the Solution of the selfsimilar problem Under investigation. For the case 

when the initial point A is in the domain Dl> 0. the pattern of the solution is displayed 

in Fig.5. The intersection of the integral curve (or shock adiabat) with the line D,=O is 
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Fig.3 

Fig, 5 Fig.6 

6enoted by the point re In the shaded domain in Fig.5, the solutian turns out to be ambiguous. 
Ae GiR2-* 0 the boundaries of all. the domainE tend to cixcles and rays, the points P, Q, H,. 

& tend to the origin, and the sector of ambiguity of the solution D’D,L,i has a vertex at 

the point 0, 

different kind of solutlian are presented in PSg.6. The structure of the soLucion in each of 
tie domains Is the same as in the zones with We same numbers in Fig.5. New domains 5 and 5‘ 
appear in place of 3, and also a domain IO'. 

As G.-+oc, all the integral cmves and sectfcns of the shock adiabats used in the 
solution in the finite part of the w plane approach Lines parallel to the coordinate axes. 
The point Dx is the vertex of the? non-uniqueness sector, and goes to infinity. 

2.. 

2, 
3, 

4, 
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ON AN EFFECTIYE ALGORITHM FOR MINIMIZING GENERALIZED TREFFTZ 
FUNCTIONALS OF LINEAR ELASTICITY THEORY* 

V. YA. TERBSBCHENKO 

The problem of minimizing the generalized Trefftz functionals of three- 
dimensional elasticity theory results in a minimax problem for the 
Lagrangian. An algorithm is proposed for searching for the saddle point 
in coordinate functions not subjected to any constraints in the domain 
and on the boundary (this is the efficiency of the algorithm). The 
convergence of the approximate solution is investigated. 

The Trefftz variational method /l/ is convenient for solving boundary 
value problemsof mathematical physics in that the dimensionality of the 
problem being solved is reduced because of its reduction to the solution 
of equations defined on the domain boundary. At the same time, when 
constructing the solution using the Ritz process, say, the coordinate 
functions should be selected so that they satisfy the differential equation 
of the boundary value problem in the domain, which is a serious constraint. 
An approach is proposed below that uses Lagrange multipliers to reduce this 
constraint when minimizing the generalized Trefftz functionals of the 
fundamental boundary vallle problems of linear elasticity theory. The 
results obtained can also be used to minimize the classical Trefftz 
functionals of the boundary value problems of mathematical physics /l/. 

Generalized Trefftz functionals were constructed in /2, 3/ for the 
fundamental problems of linear elasticity theory with continuous and 
discontinuous elasticity coefficients. The functionals are minimized in 
solutions (ordinary or generalized) for the linear equilibrium equation 
for an elastic medium in displacements. Assuming the existence of a 
coordinate system of functions satisfying the equilibrium equation (in 
the generalized sense) in /4/, the Ritz process was investigated for 
solving problems to minimize the generalized Trefftz functionals in an 
example of the second boundary value problem of three-dimensional elasticity 
theory. The practical construction of the above-mentioned coordinate 
system is a fairly complex problem. At the same time, the differential 
equation of the boundary value problem in whose solutions the minimum of 
the functionals is sought, can be considered as a linear constraint in 
the problem of minimizing the Trefftz functionals. Then such a 
minimization problem with linear constraints can be reduced to the minimax 
problem of a certain Lagrangian (by using reciprocity theory). 

1. The notation in /2,3/ is used henceforth. Let Q, (u) be a generalized Trefftz 
functional of one of the fundamental boundary value problems of linear elasticity theory 
with the domain of definition 

D, (Q) = {U 5 It',* (G) \du E L, (G).dn = li} 

which can be extended as follows: 

Here UED,(@) is the generalized solution of the equilibrium equation -411 = k' in the 
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